

MACETA OCTOGONAL

La maceta octogonal de EGA Master está diseñada para las operaciones de golpeo en zonas con riesgo de explosión como por ejemplo; la construcción naval, el mantenimiento de plantas industriales, petroquímicas...etc.

- **2.** Mango cónico pasante o pasador de fijación y seguridad, asegurando una unión perfecta con la cabeza y evitando accidentes por desprendimiento de la misma.
- **3.** Modelos en fibra de vidrio ultra-resistente y exterior del mango en PP y TPR para mayor firmeza y adherencia.

- 3. Modelos en madera Hickory que proporciona una excelente resistencia a la flexión y al impacto.
- 5. Disponibles tanto en aleación Cu-Be y Al-Bron como en Latón y Cobre.

MACETA OCTOGONAL

Cu-Be	OD Al-Bron	← L →	Kg.	Dureza Cu-Be	Dureza Al-Bron
70502	71757		1		
70503	71758	370	1,5		
70504	71759		2,0		
70505	71760		2,5		
70506	71761		3,0	283-365	229-291
70507	71762		4,5	203-305 Brinell	Brinell
70508	71763	900	5,0	Dilliell	Dilliell
70509	71764	900	6,8		
70510	71765		8,0		
72213	72211		10		
72975	72974		12		

Cu-Be	Al-Bron	← L →	Kg.	Dureza Cu-Be	Dureza Al-Bron
35865	35882		1		
35866	35883	370	1,5		
35867	35884		2,0		
35868	35885		2,5		
35869	35886		3,0	283-365	229-291
35870	35887		4,5	203-303 Brinell	Brinell
35871	35888	900	5,0	Dillell	Dillell
35872	35889	900	6,8		
35873	35890		8,0		
35874	35891		10		
35875	35892		12		

COD			lb	Dureza	Dureza
Cu-Be	Al-Bron			Cu-Be	Al-Bron
35762	35763	380	3		
35764	35765		5		
35766	35767		7.1/2	283-365	229-291
35768	35769	840	10	Brinell	Brinell
35770	35771		15		
35772	35773		18		

COD			lb	Dureza	Dureza
Cu-Be	Al-Bron			Cu-Be	Al-Bron
35876	35893	380	3		
35877	35894		5		
35878	35895		7.1/2	283-365	229-291
35879	35896	840	10	Brinell	Brinell
35880	35897		15		
35881	35898		18		

MACETA OCTOGONAL

COD Latón	 ← 	gr.
72740	280	300
72741	310	500
72742	400	1000
72743		1500
72744		2000
72745	900	3000
72746		4000
72747		5000
72748		7000
72749		10000

COD Latón	← L →	gr.
35965	280	300
35966	310	500
35967		1000
35968	400	1500
35969		2000
35970		3000
35971		4000
35972	900	5000
35973		7000
35974		10000

COD		gr.	
Cu			
72750	350	450	
72751	400	1000	
72752		2500	
72753		3600	
72754	900	4500	
72755		5400	
72756		6400	
72757		10000	

COD Cu	← L →	gr.
35975	350	450
35976	400	1000
35977		2500
35978		3600
35979	900	4500
35980	900	5400
35981		6400
35982		10000

Las herramientas de cobre o latón no pueden ser nunca considerados como sustitutivos de las herramientas de aluminio-bronce o cobre-berilio, debido a que su dureza es muy inferior a la necesaria para la mayoría de aplicaciones. Existe la tentación de escoger herramientas en cobre o latón debido a su menor coste respecto a las aleaciones de aluminio-bronce o cobreberilio. Esta opción no solo es peligrosa de por si, sino que hará que a corto plazo tengamos que reemplazarlas por nuevas unidades debido al desgaste sufrido por sus bajas durezas.